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Abstract 
 
A combined finite volume and finite element method is presented for solving the unsteady scalar convection-

diffusion-reaction equation in two dimensions. The finite volume method is used to discretize the convection-diffusion-
reaction equation. The higher-order reconstruction of unknown quantities at the cell faces is determined by Taylor's 
series expansion. To arrive at an explicit scheme, the temporal derivative term is estimated by employing the idea of 
local expansion of unknown along the characteristics. The concept of the finite element technique is applied to deter-
mine the gradient quantities at the cell faces. Robustness and accuracy of the method are evaluated by using available 
analytical and numerical solutions of the two-dimensional pure-convection, convection-diffusion and convection-
diffusion-reaction problems. Numerical test cases have shown that the method does not require any artificial diffusion 
to improve the solution stability. 
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1. Introduction 

Mathematical models of physical, chemical, bio-
logical, and environmental phenomena are governed 
by various forms of partial differential equations. The 
partial differential equations describing the transport 
phenomena in fluid dynamics [1-4] are particularly 
difficult due to the convection terms. Such equations 
represent the hyperbolic conservation law for which 
their solutions always contain discontinuity and high 
gradient; thus accurate numerical solutions are very 
difficult to obtain. Special treatment must be applied 
to suppress spurious oscillations of the computed 
solutions for both the pure convection and convec-
tion-dominated problems [5-8]. At present, better 

ways to approximate the convection term are still 
needed, and thus development of accurate numerical 
modeling for the convection-diffusion equations re-
mains a challenging task in computational fluid dy-
namics [1-11]. 

The explicit method is popular because it is simple 
and parallelizable. However, the method is limited by 
the CFL stability criterion and thus a small time step 
is required to stabilize the computational procedure. 
On the other hand, the implicit method is uncondi-
tionally stable, but larger time step may not be used 
because the solution accuracy degrades as it proceeds 
in time. The inversion of the coefficient matrix is 
another weakness of the method because it is a time-
consuming process. To simulate large scale industrial 
applications, the available memory is a crucial aspect 
that must be considered. The explicit method is thus 
preferred in the development of new algorithms. 

The objective of this work is to develop an explicit 
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finite volume/finite element method that can provide 
stabilized numerical solutions for unsteady scalar 
convection-diffusion-reaction problems. The com-
bination of the conventional finite element and finite 
volume methods for analyzing fluid flow problems is 
of interest to many researchers [12-14]. In this paper, 
an explicit finite volume method is employed to de-
rive the discretized equations for the spatial domain. 
The higher-order solution is approximated by extend-
ing the idea of references [15-17] to determine the 
numerical flux along the cell face at the half time step 
by )( 2/1+= n

ijff φ . To formulate the numerical 
scheme in an explicit form, the temporal term is esti-
mated by adopting the idea of the local expansion of 
unknowns along the characteristics [18-19]. Robust-
ness and efficiency of the proposed method are exam-
ined by analyzing the pure convection, convection-
dominated diffusion, and convection-diffusion-react-
ion problems. The presentation of the paper starts 
from the explanation of the theoretical formulation in 
Section 2. The performance of proposed method is 
then evaluated in Section 3 by using four examples: 
(1) the square pulse flow in a square domain, (2) the 
rotation of two Gaussian pulses, (3) the triangular 
wave inflow convection, and (4) the skewed convec-
tion problem with influence of reaction. 
 

2. Finite volume element formulation 

The governing partial differential equation for the 
unsteady scalar convection-diffusion-reaction prob-
lem can be written in the form as 
 

q
t

=+∇−⋅∇+
∂
∂ κφφεφφ )(v  (1) 

 
where φ  is the unknown scalar quantity, )(xvv =  
is the given convection velocity field, 0≥ε  is the 
diffusion coefficient, κ  is the reaction coefficient, 

),( tqq x=  is the prescribed source term, and 
),0( Tt∈  with 0>T . 

The initial condition is defined for Ω∈x  and 
2R⊂Ω  by )()0,( 0 xx φφ = . Equation (1) is then 

integrated over an arbitrary control volume iΩ  and 
in the time interval ),( 1+nn tt  to obtain 
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In the conventional finite volume method, the ap-

proximation to the cell average of φ  over iΩ  at 
time nt  and 1+nt  is represented by 
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where iΩ  is the measure of iΩ . Next, the tempo-
ral integration and the divergence theorem are applied 
to the first and the second term of Eq. (2), respec-
tively. With the use of Eq. (3), Eq. (4) is obtained: 
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For an arbitrary control volume iΩ , the flux integral 
over iΩ∂  appearing on the right-hand side of Eq. (4) 
could be approximated by the summation of the 
fluxes passing through all adjacent cell faces. Hence, 
by applying the midpoint quadrature integration rule 
for both the temporal and spatial domain terms, the 
flux integral over iΩ∂  may be approximated by 
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where NF is the number of the surrounding control 
volumes, and ijΓ  is the segment of boundary iΩ∂  
between the two adjacent control volumes iΩ  and 

jΩ , which is defined by ij
NF
ji Γ∪=Ω∂ =1  and 

jiij Ω∂∩Ω∂=Γ . It should be noted that 
)( 2/1+∇ n

ij tφ  is approximated by )( n
ij tφ∇  through-

out this paper for simplicity. The integrations of the 
reaction and source terms can be also approximated 
by 
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By substituting Eqs. (5)-(7) into Eq. (4), an explicit 
finite volume scheme for solving Eq. (1) can be writ-
ten in the form 
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where the quantities at time 1/ 2nt +  are 1/ 2n
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The gradient term, n

ijφ∇ , is determined by the 
weighted residuals method, which is commonly used 
in the finite element technique [20]. First, this n

ijφ∇  
is assumed to distribute linearly over iΩ  in the form 
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where NP is the number of control volume vertices, 
and )(xjN  denotes the linear interpolation func-
tions for the adjacent control volumes. By applying 
the weighted residuals method and Gauss’s theorem 
to Eq. (9), the gradient quantities at the grid point are 
obtained as 
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where M  is the consistent mass matrix [20], and 

n
ij ,φ∇  are the contributions of the gradient quantities 

in the control volume iΩ  to the gradient quantities 
at the grid point j. The nodal gradient approximation 
in Eq. (10) is similar to that used in the control vol-
ume finite element method suggested by Swamina-
than et al. [21] for discretizing the diffusion flux. 
Equation (10) is presented in a simple form herein so 
that it can be applied conveniently to the unstructured 
grid. To compute the total gradient quantities at node 
j, Eq. (10) is applied to all control volumes I sur-
rounding the grid point j such that 
 

,
1

I
n n
j j i

i

φ φ
=

∇ = ∇∑  (11) 

 
The gradient quantities at ijΓ , n

ijφ∇ , are then com-

puted by applying the midpoint quadrature integration 
rule along the edge connected to grid point i and j. 

Finally, the scalar quantity at the half time step 
2/1+nt , 2/1+n

ijφ , is approximated by applying the Tay-
lor's series expansion in both space and time [15-17]. 
Similarly, the scalar quantity, 2/1+n

iφ , is approxi-
mated by applying the Taylor's series expansion in 
time. To obtain the explicit numerical scheme, the 
temporal derivative term is determined by utilizing 
the idea of local expansion of unknown along the 
characteristics [18]. By assuming that the velocity 
points in the direction from iΩ  to jΩ , the values of 

2/1+n
ijφ  and 2/1+n

iφ  can be written as 
 

( ) ( )1/ 2

2
n n n n
ij i ij i i i i

tφ φ φ φ+ ∆= + − ⋅∇ − ⋅∇x x v  (12) 

( )1/ 2

2
n n n
i i i i

tφ φ φ+ ∆= − ⋅∇v  (13) 

 
For the opposite direction of velocity, the values of 

2/1+n
ijφ  and 2/1+n

iφ  could be computed from Eqs. 
(12) and (13), respectively, but using the values from 
the neighboring triangles according to the upwinding 
direction. 
 

3. Accuracy and stability analysis 

For simplicity, the order of accuracy and the stabil-
ity of the explicit numerical scheme [22] given by Eq. 
(8) are analyzed on a uniform one-dimensional grid 
cell, xi ∆=Ω , and at a constant velocity of a > 0. 
The homogeneous unsteady convection-diffusion 
equation for the ith cell, ),( 2/12/1 +−∈Ω iii xx , may be 
written in a semi-discrete form as 
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By using the linear interpolation function as described 
above together with Eq. (12), the cell-centered finite 
volume-based finite element equation for Eq. (14) is 
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where tR a
x
∆=
∆

 and 2

tr
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∆

. Eq. (15) represents 

the second-order one-sided upwind-space approxima-
tion and the centered-space approximation for the 
convective and diffusive terms, respectively. Hence, 
the order of accuracy for the numerical scheme is 

2 2( , )O t x∆ ∆ . 
To investigate the stability, the discrete Fourier 

transform is applied term by term to Eq. (15). The 
amplification factor, G, corresponding to Eq. (15) is 
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Due to the complexity of Eq. (16) above, it is solved 
numerically by varying parameters with small incre-
ments to ensure the stability of the numerical scheme 
on an arbitrary cell. For stability, R should satisfy the 
CFL stability criterion. Herein, the time-step within 
each cell is determined from 
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where ijn,v  is the scaled normal velocity at ijΓ , 

c
iΓ  is the characteristic length of cell i, and 

10 ≤< C . 
 

4. Numerical examples 

To evaluate the robustness and accuracy of the 
combined finite volume and finite element method, 
examples of pure-convection, convection-diffusion 
and convection-diffusion-reaction problems are ex-
amined. All examples presented in this section were 
tested by using square grids. These examples are: (1) 
square pulse flow in a square domain, (2) rotation of 
two Gaussian pulses, (3) triangle wave inflow con-
vection, and (4) skewed convection problem with 
influence of reaction. 

 
4.1 Square pulse flow in a square domain 

The first example is adopted from the paper pre-
sented by Waterson and Deconinck [23]. It is a con- 

x

y
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0.5
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     (a) Grid S1 (b) Exact 
 
Fig. 1. Typical uniform grid S1 and exact solution of problem 
4.1. 
 
vection problem with the unknown of a scalar quan-
tity from non-uniform flow field in a unit square do-
main, )1,0()1,0( ×=Ω . The initial condition )(0 xφ  
is set to be zero and the inflow boundary condition 
along the boundary 0=y  is given by 

 

otherwise
6.04.0

0
1
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⎧
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x

xφ  (18) 

 
The steady-state velocity field is specified as 

 
xu =)(x  and yv −=1)(x  (19) 

 
Because of the sudden change of the flow profile at 

the outflow boundary 1=x , spurious oscillations of 
the computed solution may occur along that boundary. 
To eliminate these artifacts of the computed solution 
along such outflow boundary, the Barth and Jespersen 
limiter function [24] is imposed. The uniform grids 
S1 to S4 consisting of 32 × 32 ( 321=∆=∆ yx ), 64 
× 64, 128 × 128, and 256 × 256 cells, respectively, are 
used in this example.  

Figs. 1(a)-(b) show a typical grid S1 and the exact 
steady-state solution. Figs. 2(a)-(d) show the numeri-
cal solutions of the four uniform grids S1 to S4, re-
spectively. Fig. 3 shows the computed profiles along 
the outflow boundary 1=x  obtained from grids S1 
to S4 as compared to the exact solution. The com-
puted profiles obtained from these grids approach the 
exact solution as the grid is refined. Figure 4 shows 
the plot of 1L -norm errors of the solutions versus 
grid sizes.  

It is noted that the experimental order of conver-
gence (EOC) of the 1L -norm error for this problem is 
less than one due to the effect of the limiter function. 
The minimum and maximum values obtained from 
the grid S4 are -0.0065 and 1.003, respectively. By 
comparing these computed solutions with the exact 
minimum and maximum values of 0 and 1, respec- 
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               (a) Grid S1                         (b) Grid S2 
 

 
                (c) Grid S3                      (d) Grid S4 
 
Fig. 2. Numerical solutions of grids S1 to S4 of problem 4.1. 

 

 
 
Fig. 3. Comparison of exact and numerical solutions of grids 
S1 to S4 of problem 4.1. 

 

 
 
Fig. 4. Experimental order of convergence of the 1L -norm 
error of problem 4.1. 

tively, the proposed method can provide a solution 
that converges to the exact solution as the grid is re-
fined. 
 
4.2 Rotation of two gaussian pulses 

To evaluate the performance of the proposed 
method for solving pure convection and convection-
dominated diffusion problems, the example of the 
two Gaussian pulses scalar field rotating around the 
domain )5.0,5.0()5.0,5.0( ×−−=Ω is selected. This 
problem is adopted from the example presented by 
Wang et al. [25] for which the initial condition is 
given by 
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where 

1cx  and 
2cx  are the center coordinates of the 

Gaussian pulses which are )0,25.0(−  and )0,25.0( , 
respectively. The standard deviation is given by 

0447.0=σ . The rotating velocity field with the an-
gular velocity of 4 rad/s is 

 
yu 4)( −=x  and xv 4)( =x  (22) 

 
The final time is selected as 2π , which is the time 
period required for one turn rotation. To determine 
the EOC value of the proposed method, a refined grid 
S5 (512 × 512) is included in addition for this exam-
ple. 

The first test case is a pure convection problem. 
The contour and the 3D contour plots of the exact and 
numerical solutions from the three uniform grids S1, 
S2, and S3, are presented in Figs. 5(a)-(d), respec-
tively. The comparison of the exact and numerical 
solutions (S1 to S5) along the line 0=y  passing 
through the two apexes of Gaussian pulses is shown 
in Fig. 6. It is noted that the numerical solution ob-
tained from the refined grid S5 coincides with the 
exact solution. These figures show that, by comparing 
with the exact minimum of 0 and maximum of 1, the 
proposed method provides a solution that converges 
to the exact solution as the grid is refined. To deter-
mine the EOC value of the method, Fig. 7 plots the 
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1L -error norms versus grid sizes for the sequence of 
grid S2 to S5. This figure shows that the EOC value 
for this first test case is around two. Results obtained 
from the proposed method (FVEM), the conventional 
finite volume method (FVM) with second-order TVD 
Runge-Kutta time stepping [15], and the characteris-
tic Galerkin finite element method (CFEM) [19,20] 
are compared in Fig. 8. Figure 9 compares the distri-
butions obtained from three methods using grid S3 
with the exact solution along the line 0=y . The 
figure shows that the FVM gives a smeared distribu-
tion of the solution. The solution obtained from  

 

 
(a) Exact 

 

 
(b) Grid S1 

 

 
(c) Grid S2 

 

 
(d) Grid S3 

 
Fig. 5. Comparison of exact and numerical solutions of grids 
S1, S2, and S3 of problem 4.2 ( 0=ε ). 
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Fig. 6. Comparison of numerical solutions along the line 

0=y  of problem 4.2 ( 0=ε ). 
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Fig. 7. Experimental order of convergence of the 1L -norm 
error of problem 4.2 ( 0=ε ). 

 

 
 

(a) FVEM                   (b) FVM 
 

 
(c) CFEM 

 
Fig. 8. Comparison of three numerical schemes on grid S3 of 
problem 4.2 ( 0=ε ). 
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Fig. 9. Comparison of numerical solutions along the line 

0=y  on grid S3 of problem 4.2 ( 0=ε ). 

 

 
(a) Exact 

 
(b) Grid S1 

 
(c) Grid S2 

 
(d) Grid S3 

 
Fig. 10. Comparison of exact and numerical solutions of grids 
S1, S2, and S3 of problem 4.2 ( 410−=ε ). 
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Fig. 11. Comparison of numerical solutions along the line 
0=y  of problem 4.2 ( 410−=ε ). 
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Fig. 12. Experimental order of convergence of the 1L -norm 
error of problem 4.2 ( 410−=ε ). 

 
CFEM is comparable with FVEM but is less accurate. 
In addition, the CFEM yields a solution with small 
oscillation behind the two Gaussian pulse profiles. 

The second test case is a convection-dominated dif-
fusion problem with a diffusion coefficient of 

410−=ε . The contour and the 3D contour plots of 
the exact and numerical solutions are presented in 
Figs. 10(a)-(d). The comparison of the exact and nu-
merical solutions along the line 0=y  is also shown 
in Fig. 11. These figures again show that, by compar-
ing with the exact minimum of 0 and maximum of 
0.8642, the proposed method again provides a solu-
tion that converges to the exact solution as the grid is 
refined. Fig. 12 plots the 1L -error norms versus grid 
sizes for the sequence of grids S2 to S5, and the EOC 
value for this second test is also around two.  

A comparison of the results obtained from the three 
methods for this case is presented in Fig. 13. Fig. 14 
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(a) FVEM                               (b) FVM 

 
(c) CFEM 

 
Fig. 13. Comparison of three numerical schemes on grid S3 
of problem 4.2 ( 410−=ε ). 
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Fig. 14. Comparison of numerical solutions along the line 

0=y  on grid S3 of problem 4.2 ( 410−=ε ). 
 
compares the solutions obtained from three methods 
using grid S3 with the exact solution along the 
line 0=y . The solution behaviors are similar to the 
previous case, i.e., the FVM yields a smeared solution 
while the solution obtained from the CFEM is less 
accurate than that from the FVEM. It is noted that the 
CFEM still yields a solution with small oscillation 
behind the two Gaussian pulse profiles. 

 
4.3 Triangular wave inflow convection 

The third example is the triangular wave inflow 
convection problem on the domain =Ω )1,1()0,0( × . 
The initial condition )(0 xφ  is set to be zero and the 
boundary condition at x = 0 is given by 

 
otherwise
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(a) Exact               (b) Grid S1 

 

 
(c) Grid S2               (d) Grid S3 

 
Fig. 15. Comparison of exact and numerical solutions of grids 
S1, S2, and S3 of problem 4.3. 
 
where the steady velocity field is given by 

05.0)( =xu  and 0)( =xv . The profile drops sud-
denly to zero at the outflow boundary according to 
the condition on the right side of the domain. To re-
duce the oscillation at the outflow boundary, the 
Barth and Jespersen limiter function [24] is imposed. 

The 3D contour plots of the exact and numerical 
solutions obtained from using the three uniform grids 
S1, S2, and S3 at time t = 15 are presented in Figs. 
15(a)-(d), respectively. The comparison of the exact 
and numerical solutions (S1 to S3) along the line 

5.0=x  passing through the apex of triangular wave 
is shown in Fig. 16. There is a small dropping of the 
amount of its height with slight oscillation behind the 
front profile. However, these figures show that as the 
grid size becomes smaller, the front profile is sharper 
and the oscillation is limited to a few cells behind it. 
The numerical solutions obtained from the three nu-
merical methods using grid S2 are shown in Fig. 17. 
The numerical solution obtained from FVEM is com-
parable with the CFEM solution, while the FVM 
method produces oscillation along the flow direction. 
Fig. 18 compares the exact and numerical solutions 
along the line 5.0=x . The figure shows that the  
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Fig. 16. Comparison of numerical solutions along the line 

5.0=x  of problem 4.3. 
 

 
              (a) FVEM                               (b) FVM 

 
(c) CFEM 

 
Fig. 17. Comparison of three numerical schemes on grid S2 
of problem 4.3. 
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Fig. 18. Comparison of numerical solutions along the line 

5.0=x  on grid S2 of problem 4.3. 

FVEM method provides higher solution accuracy as 
compared to the FVM and CFEM methods. 

 
4.4 Skew convection problem with influence of reac-

tion 

The last example is a convection-diffusion-reaction 
problem of a skewed convection with an influence of 
reaction [6]. The skewed convection flow is deter-
mined on a square domain )1,1()0,0( ×=Ω , with the 
velocity field given by 15.0)( =xu  and 1.0)( =xv . 
The initial condition )(0 xφ  is set to be zero. The 
boundary conditions are equal to one along the 
boundaries 0=x  and 1=y , and zero along the 
other boundaries. The diffusion coefficient is speci-
fied as 410−=ε , and the grid 20 × 20 is used in the 
computation. For comparing with the results pre-
sented in Ref. [6], the reaction coefficient, κ , is 
gradually increased as 0, 0.01, 0.1, 1, and 10. 
 

 
                (a) κ = 0                                  (b) κ = 0.01 
 

 
                (c) κ = 0.1                                  (d) κ = 1 
 

 
(e) κ = 10 

 
Fig. 19. Numerical solutions at different reaction coefficients 
on 20 × 20 grid of problem 4.4. 
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                (a) κ = 0                                   (b) κ = 0.01 
 

 
             (c) κ = 0.1                                   (d) κ = 1 
 

 
(e) κ = 10 

 
Fig. 20. Numerical solutions at different reaction coefficients 
on unstructured grid of problem 4.4. 

 
The Barth and Jespersen limiter function is im-

posed herein to eliminate the spurious oscillations of 
the computed solution in the vicinity of a sudden 
change in the solution profile. The numerical solu-
tions at the five values of reaction coefficients as 
given above are shown in Figs. 19(a)-(e), respectively. 
For comparison purposes, this problem is tested again 
on an unstructured grid consisting of 1,624 grids (20 
cells on each boundary). The numerical solutions are 
shown in Figs. 20(a)-(e), respectively. The spurious 
oscillations are completely eliminated and the high 
quality of the solution profiles is still preserved as 
compared to those presented in Ref. [6]. Because the 
explicit artificial diffusion term was not needed dur-
ing the computation, the numerical solution thus does 
not suffer from excessive diffusion as it proceeds in 
time. 

5. Conclusion 

This paper presents an explicit formulation of a 
combined finite volume and finite element method for 
solving the unsteady scalar convection-diffusion-
reaction equation on two-dimensional domain. The 
theoretical formulation of the proposed method was 
explained in detail. The finite volume method was 
applied to derive the discretized equations for the 
spatial domain, and the concept of the finite element 
technique is implemented to estimate the gradient 
quantities at the cell faces. Four numerical examples 
were used to evaluate the robustness and to determine 
the order of accuracy of the proposed method. These 
examples showed that the method can provide a con-
verged solution with improved accuracy as the grid is 
refined. In addition, the method does not need any 
artificial diffusion to improve the solution stability. 
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